
Bear Reference Manual
For Version 0.9.4

David Dumas (daviddumas@gmail.com)

4 June 2005

Abstract

This manual is for Bear (version 0.9.4, 4 June 2005), a free software package
that performs Bers slice computations and discreteness testing for punctured
torus groups.

This reference manual is incomplete, and represents our first attempt at
documentation beyond the brief comments in the source, the ‘README’ file,
and the manual page.

Contents

1 Command-Line Parameters 2

2 Run-time Modules 4
2.1 Introduction . 4
2.2 bear - The global runtime options module 5
2.3 bers - The Bers Slice Module . 6
2.4 bers2 - The New Bers Slice Module 9
2.5 linear - The Linear Slice Module 12
2.6 anosov - The Anosov Slice Module 13
2.7 bowditch – The Bowditch Discreteness Algorithm Module 14
2.8 holonomy – The Holonomy I/O Module 16
2.9 discreteness – The Discreteness Data I/O Module 17

3 Mathematical Details 19
3.1 Parameterization of quadratic differentials 19
3.2 Computation of monodromy . 19
3.3 The discreteness algorithm . 20

1

Chapter 1

Command-Line Parameters

Bear accepts the following command-line options, which are also documented
on the manual page:

• -V
--version
Print the version number and exit.

• -h
--help
Print a brief summary of the command-line options and exit.

• -i
--interactive
Enter interactive mode after processing the command-line. This is the
default unless an input filename is provided.

• -e <string>
--exec <string>
Execute ¡string¿ as if it were entered into the interpreter during and in-
teractive session. This option may be given more than once, in which case
the statements will be executed in the order given.

• -l <library-name>
--library <library-name>
Load the Lua library ¡library-name¿ before executing any scripts or enter-
ing interactive mode.

• -v
--verbose
Provide verbose output on stderr about what is happening. This also
enables time-to-completion estimation during calculations.

• -q
--quiet

2

Be completely quiet. Suppresses even fatal errors and all Lua i/o except
that which is specifically requested (e.g. the ‘print’ command). Exception:
when in interactive mode, the prompt will still be displayed.

3

Chapter 2

Run-time Modules

2.1 Introduction

Bear interprets its input using Lua (www.lua.org), a procedural scripting lan-
guage with a simple C-like syntax. What follows is a micro-introduction Lua
as it is used to control Bear and a listing of the parameters and functions that
Bear provides. The Lua documentation, which is available from the web page,
provides much more detailed information.

A typical Bear script might calculate holonomy representations, test for
discreteness, and write some of the resulting data to a file. This is accomplished
by manipulating the values of certain parameters and then calling functions that
perform the actual calculations and I/O operations.

The functionality of Bear is divided into several modules, which are like C
structures or (instances of) C++ classes. Each module is a single data structure
(a Lua table, actually) that contains both control parameters and functions that
perform operations depending on those parameters.

Parameters can be assigned values using a C-like syntax:

modulename.parameter = value;

Note that the semicolon at the end of the line is optional. The parameter
value can be a literal of the appropriate type, as in these examples:

module.numberparam = 867530.9;
module.stringparam1 = ’foo in single quotes’;
module.stringparam2 = ‘‘bar in double quotes’’;

Values can also be constructed via more complicated expressions, possibly using
other variables; for example, the following will give module.b the value 205.80:

m = 2; d = 5;
module.b = (m*100) + d + 80/100

4

For the construction of strings there is the concatenation operator “..”:

firstword = ’foo’; secondword = ’bar’;
module.foospacebar = firstword .. ’ ’ .. secondword;

The core functionality of Bear is provided by the functions of the various
modules; such functions are called as follows:

module.function(param1,param2,param3);
module.otherfunction();

Lua also has an extensive runtime library, providing many of the basic math-
ematical operations, string formatting functions, file input and output, and op-
erating system interfaces common in other high-level languages. We will not
detail these here, except for an example showing the usefulness of library func-
tions for Bear computation scripts:

index = 15; -- this is a comment, started by two hyphens
basefilename = ’output’;
filename = basefilename .. string.format(’\%03d’,index) .. ’.dat’;
print(filename); -- will print ’output015.dat’

2.2 bear - The global runtime options module

2.2.1 Purpose

The bear module allows certain global options to be changed at runtime, and
allows a script to query certain configuration parameters (e.g. the version num-
ber). When the value of a parameter in this module is changed, it takes effect
immediately.

2.2.2 Parameters

• bear.verbose
If set to a nonzero value, produce verbose output. (See the command-line
option -v or --verbose.)

• bear.quiet
If set to a nonzero value, suppress all output. (See the command-line
option -q or --quiet.)

• bear.interactive
If set to a nonzero value, enter interactive mode after processing of scripts
named as command-line parameters. This option has no effect if set in-
teractively. (See the command-line option -i or --interactive.)

• bear.version (read-only)
A string containing the Bear version number.

5

• bear.build hostname(read-only)
The name of the host on which Bear was compiled.

• bear.build date (read-only)
The date on which Bear was compiled.

• bear.build flags (read-only)
The flags passed to the C compiler when Bear was compiled.

• bear.build compiler version (read-only)
The vendor and version number of the C compiler used to compile Bear.

2.3 bers - The Bers Slice Module

2.3.1 Purpose

The bers module computes holonomy groups of complex projective structures
on a punctured torus. When combined with a discreteness test, this allows one
to draw pictures of Bers slices of punctured tori, which is the main purpose of
Bear.

The punctured torus is specified by means of its commensurable punctured
sphere Ĉ − {0, 1, λ,∞}; the holonomy group is then computed as the linear
monodromy of the differential equation

u′′(z) +
1
2
φ(z)u(z) = 0

where the quadratic differential φ(z) is given by

φ(z) =
1

2z2
+

(λ− 1)2

2(z − λ2)(z − 1)2
+

c

z(z − 1)(z − λ)
.

Here c is a complex-valued parameter that specifies the complex projective
structure. The module iterates through values of c in a square grid with a
specified center and size.

2.3.2 Features

The heart of the Bers module is an ordinary differential equation solver that
is applied to the Schwarzian equation associated to a quadratic differential.
All of the ODE solvers from the GNU Scientific Library (GSL) are available,
including popular methods like Runge-Kutta (classical, and with higher-order
error estimates) and the Bulirsch-Stoer implicit solver.

If a FORTRAN compiler is available when Bear is built, the LSODE solver
is also included (since version 0.9.4), and its use is recommended for high per-
formance in holonomy calculations of moderate complexity.

Both the bers and bers2 modules support a modular integration contour
API (since version 0.9.3), allowing several types of integration contours (splines,

6

piecewise linear, ellipses, etc.). The various integration contours have different
speed/accuracy characteristics that become more apparent near the extremes
of the moduli space of punctured tori.

Older versions of the bers module (before 0.9.3) supported an adaptive
precision modification algorithm that attempted to improve the accuracy of
the holonomy calculation in cases where the Schwarzian equation integrand is
highly oscillatory. This feature has been removed because its implementation
was never very successful. Different schemes for the improvement of ODE solver
performance in the oscillatory regime may be considered for future development.

2.3.3 Parameters

• bers.lambda.real
bers.lambda.imag
The real and imaginary parts of the modular parameter λ such that Ĉ −
{0, 1, λ,∞} is commensurable to the conformal structure on the punctured
torus.

• bers.center.real
bers.center.imag
The real and imaginary parts of the center of the grid.

• bers.radius
The radius (i.e. half of the side length) of the square bounding the grid.

• bers.size
The number of points in each row and column of the grid.

• bers.precision
The ODE solver will attempt to maintain an absolute error less than
bers.precision when integrating the Schwarzian differential equation.

• bers.relprecision
Applies to the LSODE solver only. LSODE will attempt to maintain a rel-
ative (fractional) error of less than bers.relprecision when integrating
the Schwarzian differential equation. New in Bear 0.9.4.

• bers.method
The name of the ODE integration method to be used. Currently, the
following methods from GSL are supported:

◦ rk2
Embedded 2nd order Runge-Kutta with 3rd order error estimate.
(recommended)

◦ rk4
4th order (classical) Runge-Kutta.

7

◦ rkf45
Embedded 4th order Runge-Kutta-Fehlberg method with 5th order
error estimate. This method is a good general-purpose integrator.

◦ rkck
Embedded 4th order Runge-Kutta Cash-Karp method with 5th order
error estimate.

◦ rk8pd
Embedded 8th order Runge-Kutta Prince-Dormand method with 9th
order error estimate. (recommended)

◦ rk2imp
Implicit 2nd order Runge-Kutta at Gaussian points

◦ rk4imp
Implicit 4th order Runge-Kutta at Gaussian points

◦ gear1
M=1 implicit Gear method (recommended)

◦ gear2
M=2 implicit Gear method

◦ bsimp
Bulirsch-Stoer method

The following method from ODEPACK is available if a FORTRAN com-
piler can be found when Bear is built:

◦ lsode
LSODE, a basic but highly effective FORTRAN ODE solver devel-
oped at Lawrence Livermore National Laboratory. Internally it uses
a modification of the Adams algorithm.

• bers.blocking
An integer flag controlling blocking mode. If nonzero, the Bers slice window
will be computed in a way that allows several Bers slice images to be
glued together without duplication of the boundary pixels. Specifically,
the window will be set to the upper-left sizexsize subset of a (size +
1)x(size + 1) grid with the specified center and offset.

• bers.contour type
Type of Schwarzian equation integration contour. The integration API
supports any system of piecewise C2 contours. Currently the following
types are available:

◦ spline_ellipse
Closed cubic splines approximating ellipses. This was the only con-
tour type available before version 0.9.3.

8

◦ ellipse
Exact ellipses. This is sometimes a bit slower than spline_ellipse
but is guaranteed to enclose the right set of singular points, even for
extreme values of the parameters (e.g. |λ| < 10−6).

◦ piecewise_linear
Rectangular contours with horizontal and vertical edges.

2.3.4 Obsoleted parameters

These parameters were available in previous versions of Bear, but have since
been removed. It is not expected that they found widespread use.

• bers.adapt-steps
Removed in Bear 0.9.3

• bers.markov-threshold
Removed in Bear 0.9.3

• bers.adapt-divisor
Removed in Bear 0.9.3

• bers.adapt-persist
Removed in Bear 0.9.3

2.3.5 Functions

• bers.run()
Compute the holonomy.

2.4 bers2 - The New Bers Slice Module

2.4.1 Purpose

The bers2 module performs the same function as the bers module (above).

2.4.2 Features

The bers2 module is a rewrite of the bers module that allows the holonomy
to be computed on a sparse grid and then inteprolated over a much finer mesh.
When the Schwarzian equation can be solved accurately, the holonomy typi-
cally varies slowly enough that such interpolation gives nearly the same output
with much less calculation. In cases where the Schwarzian equation is highly
oscillatory, however, the bers module may be a better choice.

Both the bers and bers2 modules support a modular integration contour
API (since version 0.9.3), allowing several types of integration contours (splines,
piecewise linear, ellipses, etc.). The various integration contours have different
speed/accuracy characteristics that become more apparent near the extremes
of the moduli space of punctured tori.

9

2.4.3 Parameters

Parameters unchanged from the bers module.

• bers2.lambda.real
bers2.lambda.imag
The real and imaginary parts of the modular parameter λ such that Ĉ −
{0, 1, λ,∞} is commensurable to the conformal structure on the punctured
torus.

• bers2.center.real
bers2.center.imag
The real and imaginary parts of the center of the grid.

• bers2.radius
The radius (i.e. half of the side length) of the square bounding the grid.

• bers2.size
The number of points in each row and column of the grid.

• bers2.precision
The ODE solver will attempt to maintain an absolute error less than
bers2.precision when integrating the Schwarzian differential equation.

• bers2.relprecision
Applies to the LSODE solver only. LSODE will attempt to maintain a rel-
ative (fractional) error of less than bers2.relprecision when integrating
the Schwarzian differential equation. New in Bear 0.9.4.

• bers2.method
The name of the ODE integration method to be used. Currently, the
following methods from GSL 1.4 are supported (Note: these are exactly
the methods that do not require the Jacobian of the system):

◦ rk2
Embedded 2nd order Runge-Kutta with 3rd order error estimate.

◦ rk4
4th order (classical) Runge-Kutta.

◦ rkf45
Embedded 4th order Runge-Kutta-Fehlberg method with 5th order
error estimate. This method is a good general-purpose integrator.

◦ rkck
Embedded 4th order Runge-Kutta Cash-Karp method with 5th order
error estimate.

◦ rk8pd
Embedded 8th order Runge-Kutta Prince-Dormand method with 9th
order error estimate. (recommended)

10

◦ rk2imp
Implicit 2nd order Runge-Kutta at Gaussian points

◦ rk4imp
Implicit 4th order Runge-Kutta at Gaussian points

◦ gear1
M=1 implicit Gear method (recommended)

◦ gear2
M=2 implicit Gear method

◦ bsimp
Bulirsch-Stoer method

The following method from ODEPACK is available if a FORTRAN com-
piler can be found when Bear is built:

◦ lsode
LSODE, a basic but highly effective FORTRAN ODE solver devel-
oped at Lawrence Livermore National Laboratory. Internally it uses
a modification of the Adams algorithm.

Parameters specific to the bers2 module.

• bers2.interp type
Type of holonomy interpolation; this is used to extend the holonomy from
a sparse grid where it is computed using the Schwarzian ODE to a dense
grid that is used to generate the Bers slice. Currently, the following inter-
polation methods are supported (via GSL):

◦ linear
Bilinear interpolation.

◦ cubic
Bicubic interpolation. (default; recommended)

• bers2.interp delta
Threshold for automatic interpolation. The sparse grid is subject to re-
peated dyadic subdivision until exact holonomy values on the new grid
points agree with the values interpolated there using the previous grid,
up to a threshold of bers2.interp delta. Setting this to zero effectively
forces the use of the most dense grid allowed by bers2.sample max.

• bers2.sample min
Initial size for the interpolation grid. In the current implementation,
the quotient bers2.size/bers2.sample min must be a power of 2.

• bers2.sample max
Maximum size for the interpolation grid. Dyadic refinement will stop when
the grid reaches this size, even if the threshold bers2.interp delta has
not been satisfied. In the current implementation, the bers2.sample max
must be of the form 2kbers2.sample min for a positive integer k.

11

• bers2.padding
Interpolation window padding control. In order to eliminate interpolation
artifacts at the boundary of the grid, the holonomy grid is scaled by a
factor of (1 + bers2.padding) about its center. Thus holonomy values
are computed beyond the range in which the interpolating functions will
be sampled. The default value of 0.1 is reasonable.

• bers2.contour type
Type of Schwarzian equation integration contour. The integration API
supports any system of piecewise C2 contours. Currently the following
types are available:

◦ spline_ellipse
Closed cubic splines approximating ellipses. This contour type is
(always) used by the bers module.

◦ ellipse
Exact ellipses. This is sometimes a bit slower than spline_ellipse
but is guaranteed to enclose the right set of singular points, even for
extreme values of the parameters (e.g. |λ| < 10−6).

◦ piecewise_linear
Rectangular contours with horizontal and vertical edges.

2.4.4 Functions

• bers2.run()
Compute the holonomy.

2.5 linear - The Linear Slice Module

2.5.1 Purpose

The linear module generates an array of Markov triples corresponding to a
linear slice of the representation variety in which one trace is fixed and the
other varies through a square grid of values in C.

2.5.2 Parameters

• linear.lambda.real
linear.lambda.imag
The real and imaginary parts of the trace that remains fixed throughout
the linear slice when the slope is zero.

• linear.center.real
linear.center.imag
The real and imaginary parts of the center of the grid (i.e. the center value
of the trace that varies across the slice).

12

• linear.slope.real
linear.slope.imag
The real and imaginary parts of the complex ’slope’ of the linear slice. If
the slope is zero, then lambda is truly fixed; otherwise both traces vary
but where the ratio of differences from the center point is equal to the
slope.

• linear.radius
The Euclidean norm of the maximum deformation of the trace in each
of the real and imaginary axes. Also equal to half the side length of the
bounding square of trace values.

• linear.size
The number of points in each row and column of the grid.

2.5.3 Functions

• linear.run()
Generate the linear slice.

2.6 anosov - The Anosov Slice Module

This module is experimental and may change substantially in future
releases.

2.6.1 Purpose

The anosov module computes Markov triples on the unstable manifold associ-
ated to a fixed point of a pseudo-anosov mapping class on the representation
variety. It is also possible to search for fixed points and stable/unstable eigenval-
ues, though this Newton-type iteration is not very predictable for initial guesses
far from a fixed point.

2.6.2 Parameters

• anosov.p, anosov.q
The pseudo-anosov mapping class is specified via the numerator p and
denominator q of the slope of the image of a (0,1)-curve on the torus.
Specifically, the mapping class is calculated via the Farey word wp/q(A,B)
where A and B are the horizontal and vertical Dehn twists. (Note: not
all choices of p and q correspond to pseudo-anosov mapping classes.)

• anosov.fx, anosov.fy, anosov.fz
A Markov triple fixed by the mapping class. (This can be specified directly
or computed via the find fixed function.)

13

• anosov.sx, anosov.sy, anosov.sz
The stable eigenvector of the mapping class acting on the tangent space
at the fixed point. (This can be specified directly or computed via the
find fixed function.)

• anosov.ux, anosov.uy, anosov.uz
The unstable eigenvector of the mapping class acting on the tangent space
at the fixed point. (This can be specified directly or computed via the
find fixed function.)

2.6.3 Functions

• anosov.find fixed
Attempt to find a pseudo-anosov fixed point starting from the triple
(anosov.fx, anosov.fy, anosov.fz). If successful, reset these param-
eters and the eigenvectors accordingly.

• anosov.run
Compute the holonomy for the unstable manifold.

2.7 bowditch – The Bowditch Discreteness Algo-
rithm Module

2.7.1 Purpose

The bowditch module takes as input the Markov triples representing holonomy
representations of a family of projective structures on punctured tori and at-
tempts to determine which among these representations have discrete image. It
does by searching for a finite attractor within the tree of generating triples for
the holonomy group. Such an attractor is defined by the property that every
edge of the tree points toward it, where each edge is given an orientation point-
ing toward the smaller trace. (Note that the endpoints of an edge correspond
to triples that differ only in one generator.)

Bowditch has shown that if such an attractor exists, the set of all edges
that satisfy a certain inequality is such an attractor; furthermore, this set is
always connected. Thus the discreteness algorithm proceeds by searching for
edges in the Bowditch subtree and declaring the representation discrete if the
search terminates (within a certain time limit).

The inequality that defines the Bowditch locus involves a real parameter
t > 0, and the corresponding subtree grows as t is increased.

2.7.2 Parameters

• bowditch.maxsinkdepth
Search at most bowditch.maxsinkdepth steps for a sink in the tree of
Markov triples. Larger values will result in fewer ”undecided” points.

14

A large value here has little effect on resource consumption.

• bowditch.maxdepth
Search to depth at most bowditch.maxdepth in the tree of Markov triples
in an attempt to find a finite attracting subtree. Larger values will result
in fewer ”undecided” points.

A large value here will greatly increase the stack space used by the pro-
gram, and can lead to stack overflow.

• bowditch.maxtrace
If a trace larger than bowditch.maxtrace in absolute value is encountered
during the tree search, declare the associated representation ”undecided”.

• bowditch.bowditch threshold
Use the threshold t =bowditch.bowditch threshold in looking for Bowditch’s
attracting subtree of Markov triples. This means that every egde in the
subtree must originate or terminate in a trace of absolute value less than
3 + t.

• bowditch.jorgensen threshold
Test for traces smaller than bowditch.jorgensen threshold rather than
applying the actual Jørgensen inequality. As long as bowditch.jorgensen threshold
< 1.0, this is a sufficient criterion for indiscreteness.

Values slightly smaller than 1.0 may make the discreteness algorithm more
tolerant of numerical error.

• bowditch.extended
This parameter determines what data will be computed and stored each
time the discreteness algorithm is run. If set to zero, only ’basic’ discrete-
ness data is computed, which consists of the following fields:

◦ depth - the maximum depth reached in the search through the tree
of Markov triples.

◦ result - the result of the discreteness test (1 for discrete, −1 for
indiscrete, other values indicate errors)

If bowditch.extended is set to a nonzero value, additional (time-consuming)
computations are performed and the following additional fields are avail-
able:

◦ sinks - the number of sinks found during the search through the
Markov tree (which is equal to the total number of sinks if the rep-
resentation is discrete).

◦ nodes - the total number of nodes examined during the search through
the Markov tree (which is the size of the finite attractor if the repre-
sentation is discrete).

15

2.7.3 Functions

• bowditch.run()
Start discreteness testing.

2.8 holonomy – The Holonomy I/O Module

2.8.1 Purpose

The holonomy module writes holonomy data (Markov triples) and associated
metadata to HDF5 data files.

2.8.2 Parameters

• holonomy.filename
A string containing the filename (and optional internal path) to which the
holonomy data will be written. For example,

holonomy.filename = ’output.h5:mydataset’

will write to a dataset named ’mydataset’ in an HDF5 file called ’out-
put.h5’; similarly,

holonomy.filename = ’output.h5:outer/inner/mydataset’

will write to a dataset named ’mydataset’ contained in a group ’inner’,
which is in turn contained in a group ’outer’ in an HDF5 file called ’out-
put.h5’.

• holonomy.file mode
A string indicating the desired handling of existing output files; the pos-
sible values are:

◦ ’create’ – if the file already exists, generate an error.

◦ ’truncate’ – if the file already exists, truncate it and proceed.

◦ ’update’ – if the file already exists, open it and append data; dataset
name conflicts will produce errors.

2.8.3 Functions

• holonomy.write(data)
Use the current holonomy output settings to write holonomy data from
the module data (e.g. bers or linear) to a file.

16

2.9 discreteness – The Discreteness Data I/O
Module

2.9.1 Purpose

The discreteness module writes discreteness data and associated metadata to
HDF5 data files.

2.9.2 Parameters

• discreteness.filename
A string containing the filename (and optional internal path) to which the
holonomy data will be written. For example,

holonomy.filename = ’output.h5:mydiscdata’

will write to a dataset named ’mydiscdata’ in an HDF5 file called ’out-
put.h5’; similarly,

holonomy.filename = ’output.h5:outer/inner/mydiscdata’

will write to a dataset named ’mydiscdata’ contained in a group ’inner’,
which is in turn contained in a group ’outer’ in an HDF5 file called ’out-
put.h5’.

• discreteness.file mode
A string indicating the desired handling of existing output files; the pos-
sible values are:

◦ ’create’ – if the file already exists, generate an error.

◦ ’truncate’ – if the file already exists, truncate it and proceed.

◦ ’update’ – if the file already exists, open it and append data; dataset
name conflicts will produce errors.

• discreteness.output method
A string indicating what discreteness data should be written to the output
file. The first major distinction is that between scalar output modes,
which result in an array of floating-point values, and compound output
modes, which result in arrays of compound data types.

The following scalar modes are supported:

◦ ’scalar depth’ - if discrete, output value is depth; if indiscrete, output
value is (-1) * depth.

◦ ’scalar nodes’ - if discrete, output value is nodes; if indiscrete, output
value is (-1) * depth. For this output mode, extended discreteness
testing is required.

17

◦ ’scalar sinks’ - if discrete, output value is sinks; if indiscrete, output
value is (-1) * depth.For this output mode, extended discreteness
testing is required.

◦ ’scalar mask’ - if discrete, output value is 1; if indiscrete, output value
is −1.

The following compound modes are supported:

◦ ’basic’ - output all basic discreteness data.

◦ ’extended’ - output all extended discreteness data. For this output
mode, extended discreteness testing is required.

2.9.3 Functions

• discreteness.write(data)
Use the current discreteness output settings to write discreteness data
from the module data (e.g. bowditch) to a file.

18

Chapter 3

Mathematical Details

3.1 Parameterization of quadratic differentials

Bers slices for punctured tori are computed by numerically solving the Schwarzian
differential equation

u” +
1
2
φu = 0

on the four-times punctured Riemann sphere that is commensurable with the
punctured torus in question. The parameter λ specifies the punctured torus by
means of the cross ratio of the four punctures of the commensurable punctured
sphere.

In this way the space of holomorphic quadratic differentials on the punctured
torus is identified with a complex affine subspace of the space of meromorphic
quadratic differentials on the Riemann sphere. For the punctured torus with
parameter λ, the affine space consists of differentials with poles of order 2 at each
of the four punctures that are symmetric under the Mo”bius transformations
that preserve the set of punctures.

Such a meromorphic differential can be expressed in the form

φ(z) =
1

2z2
+

(λ− 1)2

2(z − λ2)(z − 1)2
+

c

z(z − 1)(z − λ)

for some complex number C. Note that c = 0 does not correspond to the Fuch-
sian uniformization of the punctured torus; the value of C with this property is
called the ”accessory parameter”, and is difficult to calculate in general.

3.2 Computation of monodromy

Bear uses the GNU Scientific Library to numerically integrate the Schwarzian
differential equation. Starting with a modular parameter λ and a complex
number c specifying a quadratic differential, Bear produces a ”Markov triple”
(x, y, z) of traces that define the holonomy group via the following steps:

19

1. Compute contours.
Ellipses encircling {0, λ} and {1, λ} are computed and then replaced with
approximating periodic cubic splines (to avoid costly computation of trigono-
metric functions). Currently, the number of points used for the splines is
fixed at compile-time, with a default of 16.

2. Integrate ODE.
The linear second-order holomorphic ODE is converted to a first-order
four-dimensional real system, which is then integrated along the contours
computed above. GSL uses one of several standard integration algorithms,
and attempts to maintain an absolute error of at most ε by adjusting the
step size. This produces a pair of monodromy transformations M1 and
M2.

3. Convert traces.
The monodromy transformations correspond to the squares of generating
holonomy elements because of the commensurability relationship between
the punctured torus and the sphere. The traces of generators A, B, and
AB are then computed from the matrix entries of M1 and M2 using the
SL2(C) trace identities.

3.3 The discreteness algorithm

The discreteness algorithm used by Bear is based on the work of Brian Bowditch
as described in his paper Markoff triples and quasifuchsian Groups (Preprint,
University of Southampton). In this paper a certain class of representations
of punctured torus groups into PSL2(C) is defined, and it is conjectured that
this locus is exactly the set of quasifuchsian representations. It is also shown
that the set of quasifuchsian representations is a connected component of this
locus, and in particular that the boundary of the ”Bowditch locus” contains the
boundary of the quasifuchsian locus.

Bear proceeds as though the Bowditch conjecture holds, labeling a represen-
tation discrete (quasifuchsian) if it can be shown to lie in the Bowditch locus.
On the other hand, the Jørgensen inequality is used as a sufficient condition for
indiscreteness, so it is possible that some indiscrete representations belonging
to the Bowditch locus are excluded. The table below summarizes the situation;
unless limited by the number of computations allowed for a given representation,
Bear reports the status of representations as follows:

Bowditch Non-Bowditch
Jørgensen holds quasifuchsian uncertain

Jørgensen violated undefined indiscrete

while conjecturally the reality is as follows:

Bowditch Non-Bowditch
Jørgensen holds quasifuchsian (nowhere dense set)

Jørgensen violated (never occurs) indiscrete

20

The Bowditch algorithm makes use of the infinite trivalent tree of Markov
triples associated to the initial triple of traces (x, y, z) of generators A, B, and
AB. In this tree, the three neighbors of a given triple are related as follows:

Triple Neighbors
(x,y,xy-z)

(x,y,z) (x,xz-y,z)
(yz-x,y,z)

Note that in each case, a triple differs from its neighbor by a single entry;
the edges of the tree are then oriented so that the edge in which z is replaced
by w, which we call the (z, w)-edge, is oriented toward whichever of the two has
smaller absolute value. If |z| = |w| then the edge can be oriented arbitrarily
with affecting the algorithm.

A representation lies in the Bowditch locus if it has a ”finite attractor”, that
is, a finite connected subtree Ω of markov triples such that every other edge
in the tree points toward Ω. Bowditch shows that it is possible to determine
whether or not a representation has this property using a simple algorithm; he
defines a subtree τ(ε) where the (z, w)-edge belongs to τ(ε) if and only if the
traces satisfy one of the following conditions:

1. |z| < 3 + ε and |w| < H(z)
2. |w| < 3 + ε and |z| < H(w)
Here H is a complicated function that has certain properties which imply

that τ(ε) is always connected. Bowditch then shows that if a representation has
a finite attractor, then for any positive ε, τ(ε) is a finite attractor.

Thus the algorithm proceeds as follows:

1. Check the Markov triple against the J/orgensen inequality, which states
that each trace must have absolute value greater than or equal to one.
As other Markov triples are generated, they are also checked, and if a
violation is ever discovered, the representation is ‘indiscrete’.

2. Follow oriented edges until a sink is found. (If no sink is found, then call
the representation ‘undecided’.)

3. Recursively search the tree starting from this sink, enumerating all edges
that satisfy the Bowditch inequalities.

4. If only finitely many edges are found, the representation is (conjecturally)
‘quasifuchsian’.

5. If the search proceeds for too long (exceeds a set depth, numerical overflow,
etc.), then the representation is ‘undecided’.

21

